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We have investigated the modulated and unmodulated travelling azimuthal waves 
appearing on the toroidal Taylor-Gortler (TG) vortices in a fluid contained between 
two concentric spheres with the inner sphere rotating. For smaller-clearance cases, 
toroidal TG vortices appear a t  the equator, just as in the flow between two concentric 
cylinders with the inner cylinder rotating. When the Reynolds number of the flow 
increases quasi-statically, spiral TG vortices appear in addition to toroidal TG 
vortices, and no modulation occurs, even if the Reynolds number further increases 
quasi-statically. However, when the Reynolds number is increased from zero to a 
particular value with a specific acceleration of the inner sphere, modulated wavy 
toroidal TG vortices appear. We found that the necessary condition for occurrence 
of modulation is the prevention of spiral TG vortices. Using simultaneous flow- 
visualization and spectral techniques, and measuring the fluctuation of sinks and 
sources of vortex boundaries, we obtained the frequency fi of travelling azimuthal 
waves passing a fixed point in the laboratory and the modulation frequencies f2 and 
f ;  of these waves, as determined by an observer in the laboratory and an observer 
fixed in a reference frame that rotates in phase with the travelling azimuthal waves, 
respectively. The relationship among the characteristic frequencies, fi, f2 and fi, 
obtained by modal analysis and the experimental results, is (f; + kf , /m) / f2  = - 1 ,  
where k and m are a modulation parameter and the wavenumber of travelling 
azimuthal waves, respectively. 

1. Introduction 
The flow between two concentric spheres with the inner sphere rotating and the 

outer sphere fixed (spherical Couette flow) for smaller-clearance cases shows the same 
Taylor instability as that in the flow between two concentric cylinders with the inner 
cylinder rotating and the outer cylinder fixed (circular Couette flow). Hence, just as 
Taylor vortices appear for the circular Couette flow (CCF), toroidal Taylor-Gortler 
(TG) vortices appear near the equator for the spherical Couette flow (SCF), as 
reported by Sawatzki & Zierep (1970), Munson & Menguturk (1975), Wimmer (1976), 
Waked & Munson (1978), Nakabayashi (1978, 1983), Krause (1980), Yavorskaya 
et al. (1980), Bartels (1982), Buhler & Zierep (1983, 1984), Dennis & Quartapelle 
(1984), Schrauf & Krause (1984) and Schrauf (1986). 

Since fluid motion corresponds to vortex motion, it is important to investigate 
vortex motion appearing in the laminar-turbulent transition phenomenon, in order 
to understand clearly details of the disturbance in the flow. For CCF, a singly 
periodic velocity fluctuation was found to correspond to the travelling azimuthal 
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waves on the Taylor vortices by Coles (1965), Fenstermacher, Swinney & Gollub 
(1979), Mobbs, Preston & Ozogan (1979), Walden & Donnelly (1979), Bouabdallah & 
Cognet (1980), DiPrima & Swinney (1981) and others. Also, a doubly periodic 
velocity fluctuation was discovered to correspond to both amplitude- and frequency- 
modulated travelling azimuthal waves on the Taylor vortices by Swift, Gorman & 
Swinney (1981), Rand (1981), Gorman & Swinney (1982), and King et al. (1984), for 
example. 

For SCF, however, a singly periodic velocity fluctuation corresponds to the spiral 
TG vortices, and a doubly periodic velocity fluctuation corresponds to a compound 
combination of the travelling azimuthal waves on toroidal TG vortices and the spiral 
TG vortices or the shear waves within the Ekman boundary layer, when the 
Reynolds number is quasi-statically increased from zero, as reported in Nakabayashi 
& Tsuchida (1988). Thus, for SCF, the vortex structure corresponding to singly or 
doubly periodic velocity fluctuation is not only different from that for CCF, but also 
no modulation of the travelling azimuthal waves occurs. 

On the other hand, when the Reynolds number is raised from zero to a particular 
value with a specific acceleration rate, no spiral TG vortices occur, and consequently 
wavy and modulated wavy toroidal TG vortices appear. Accordingly, a singly 
periodic velocity fluctuation corresponding to the travelling azimuthal waves and a 
doubly periodic velocity fluctuation corresponding to both amplitude- and 
frequency-modulated travelling azimuthal waves can be obtained, just as for CCF. 
However, there may be differences between SCF and CCF in the characteristic 
frequencies f,, fi and fi, because the Ekman boundary layer in SCF influences the 
travelling azimuthal waves in the wavy and modulated wavy toroidal TG vortex 
flows. Here fi is the frequency of the unmodulated travelling azimuthal waves 
passing a fixed point of observation in the laboratory, f, is the frequency of 
modulation of the travelling azimuthal waves, as determined by an observer in the 
laboratory, and f,' is the modulation frequency as determined by an observer fixed 
in a reference frame that rotates in phase with the travelling azimuthal waves 
(rotating frame). Although measurements of fi, f, and fi and a modal analysis of 
travelling azimuthal waves were reported for CCF by Swift et al. (1981), Rand (1981), 
Gorman & Swinney (1982) and King et al. (1984), there has been neither measurement 
nor consideration of the relationship among f,, f, and fi for SCF. 

In the present study, we investigate the flow states, the characteristic frequencies 
and the condition for the appearance of the wavy and modulated wavy vortex flows 
in SCF by simultaneous spectral and flow-visualization measurements, and then 
undertake the modal analysis of unmodulated and modulated waves. In  $2 we 
describe the experimental techniques. The experimental results and modal analysis 
of unmodulated waves are described in $3. In $4 the experimental results of 
modulated waves are presented. The modal analysis of modulated waves is discussed 
in $ 5 ,  where the modulation pattern is simulated using a specific function in 
comparison with the experimental data. Also, the present results of modulated and 
unmodulated waves are compared with those obtained for CCF. The conclusions are 
presented in $6. 

2. Experimental techniques 
In  the present experiment, simultaneous spectral and flow-visualization 

measurements were performed. The experimental apparatus, shown in figure 1, 
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FIGURE 1. Experimental apparatus for simultaneous spectral and flow-visualization 
measurements by measuring the intensity of laser light scattered by the aluminium flakes. 

is the same as that used in an earlier study (Nakabayashi 1983). The radius R, of the 
inner sphere, the radius R, of the outer sphere and the clearance ratio p defined as 
(Rz-  R,)/Rl, are 76.89f0.01 mm, 87.53f0.01 mm and 0.138, respectively. And the 
critical Reynolds number Re, obtained from flow-yisualization m:asurements was 
900. The Reynolds number Re is defined as 2nfoR?/v, where f o  is the rotation 
frequency of the inner sphere, and v the kinematic viscosity of the fluid. The accuracy 
of the whip of the rotating inner sphere and the concentricity of the inner and outer 
spheres were confirmed to be within f0.015 mm and fO.01 mm, respectively. 

Flow patterns were made visible in the working fluid, Glycerol-water solution of 
50 YO concentration, a t  room temperature using a suspension of small aluminium 
flakes that align with the flow direction. In  order to  clarify the flow state, both the 
whole spherical surface and the meridian cross-section of the spherical annulus were 
observed and photographed at  fixed intervals over time in the laboratory, where the 
former was illuminated by front lighting and obtained using mirrors, and the latter 
was lighted by slit illumination. 

The wavenumber m of the travelling azimuthal waves was obtained from 
photographs of all the waves around the annulus taken simultaneously. The Ic-value 
was determined as described in $4. The frequencies f i  and f i  in the laboratory were 
measured using a stopwatch, confirmed by visual observation in real time, and 
determined simultaneously from the spectral analysis of the intensity of the laser 
light scattered by the aluminium flakes. They were also obtained from analysis of 
successive photographs of the meridian cross-section. The frequency f ;  in the 
rotating frame was obtained from analysing successive photographs of the whole 
spherical surface in the laboratory at  a particular reduced Reynolds number, R* = 

Re/Re, = 2 .2 ,  and also from the relationship among f l ,  f z  and f ;  which is discussed in 
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$5, using the measured values off, and f,.The amplitude, wavelength and azimuthal 
phase of the unmodulated and modulated waves were obtained by anatping timed 
photographs of the meridian cross-section in the laboratory frame. 

The frequency scale used in the present study is expressed in units of the inner- 
sphere rotation frequency f,. Primed variables and the corresponding unprimed 
variables refer to the rotating and laboratory frames, respectively. The spectral 
resolution A f ,  defined as 2fN/N,, is about 0.005-0.01 for the Nyquist frequency 
f N  = 10-20 and the number of time-series records of scattered-light intensity, 
N ,  = 2048 or 4097. 

We obtained the required wavy and modulated wavy vortex flows by increasing 
the Reynolds number from zero to a particular value with a specific acceleration rate, 
as described later. 

3. Experimental results and modal analysis of unmodulated waves 
The schematic representation of the sources and sinks labelled j = a2-a2s and 

i2-i2s on the outer and inner spheres a t  the meridian cross-section of the spherical 
annulus, respectively, is illustrated in figure 2 for the toroidal TG vortex flow regime 
I I T  with four vortex cells (N = 4). The labels and the characteristics of the flow 
regimes appearing in the present experiment are summarized in table 1. Although the 
modulated wavy vortex flow regime labelled IIIMWT, which will be described in $4, 
was found for the first time in the present experiment, the other flow regimes are the 
same as those reported earlier by Nakabayashi (1983). The unmodulated travelling 
azimuthal waves appearing on the toroidal TG vortices correspond to the singly 
periodic oscillations in meridian angles (colatitudes) 8, of the sources and sinks j. 

The complete wavy-vortex pattern consisting of four overlapping images of the 
spherical surface is shown in figure 3, for the case in which five azimuthal waves 
(m = 5) formed on the four toroidal cells ( N  = 4). These photos were taken using a 
mirror arrangement, as seen in Nakabayashi & Tsuchida (1988). The variable q is the 
azimuthal angle, which is measured with respect to a reference frame fixed in the 
laboratory; it increases in the direction of sphere rotation. Following Coles (1965), 
the flow state of the wavy vortex flow is characterised by two integers, N and m, or 
N/m. Figure 3 shows the 4/5 state. The flow states with 2/4 and 4/6 can also be 
obtained by a particular mode of given R* and R* ( =  dR*/dT, time T is expressed 
non-dimensionally in units of a characteristic time R,(R,- R,)/v) for the present 
clearance ratio. 

The flow state 4/5 is considered irr the present study. The procedure for obtaining 
it is as follows. The inner sphere was rotated from rest and accelerated at a given rate 
(R* 2 t o  a particular Reynolds number R,* (R,* 2 2.8), where a wavy vortex 
flow state with 4/6 (II IWT) formed, as shown in figure 9. Then, R* was quasi- 
statically increased to about 4.4, where the flow state changed from 4/6 to 4/5. The 
wavy vortex flow state with 415 can be continued in the range 2.5 5 R* 5 7.2, when 
R* is quasi-statically varied. 

The temporal oscillations in the meridian angles 8,(t, rp) of the sources and sinks j, 
which are noted from analysis of the photographs of the meridian cross-section taken 
a t  fixed intervals over time a t  an azimuthal angle q, are obtained for the N / m  = 4/5 
state, as indicated by the points in figure 4,. The scale of the time t is expressed in 
units of the inner-sphere rotation period l/fo. Solid and broken lines represent least- 
square fits of the data to the sine functions given in (5). Although the data for j = 
a1 and als (omitted in the figure) barely show any oscillation, those for other j  show 
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FIGURE 2. Schematic representation of streamlines, sources and sinks labelled j = a2-a2s and 
i2-i2s on the outer and inner spheres at  the meridian cross-section, respectively, for the toroidal 
vortex flow state with four cells ( N  = 4) ; 0, source ; , sink. 

Flow regime Characteristics 

I B  
I1 T 
I1 TS 
111 WTS 
I I IWT 
111 MWT 

Laminar flow + secondary flow (laminar basic flow) 
Laminar flow + toroidal TG vortex +secondary flow 
Laminar flow + toroidal and spiral TG vortices + secondary flow 
Laminar flow + wavy toroidal and spiral TG vortices + secondary flow 
Laminar flow + wavy toroidal TG vortex + secondary flow 
Laminar flow + modulated wavy toroidal TG vortex + secondary flow 

TABLE 1. Flow regimes and their characteristics. 

t Rotation 

FIGURE 3. Complete wavy-vortex pattern for wavy-vortex-flow state with four toroidal cells and 
five azimuthal waves ( N / m  = 4/5) at R* = 4.33 (photographed using a mirror arrangement). p is 
the azimuthal angle, which is measured with respect to the laboratory and increases in the 
direction of sphere rotation. Successive waves around the annulus in the direction of wave rotation 
are labelled 1,2, ..., m. 

entirely sinusoidal oscillations with the same frequency fl, but each with a different 
amplitude A j  and temporal phase difference Atj from a reference time. Hence, both 
vortex inflow and outflow boundaries oscillate in SCF as well as CCF (Gorman & 
Swinney 1982), but the vortex inflow boundaries on the outer sphere are stationary 
for SCF. The time m/fi for m waves to pass an observer in the laboratory corresponds 



500 K .  Nakabayashi and Y .  Tsuchida 

0 

u v 
Toroidal cell m- 

J. 

90 

0 1 2 
t 

FIGURE 4. Temporal dependence of the meridian angles O,(t,p) of the sources and sinks j a t  an 
azimuthal angle rp in the laboratory for the wavy-vortex-flow state with four toroidal cells and five 
azimuthal waves ( N / m  = 4/5) a t  R* = 5.19. Experimental data:  0, source; 0 ,  sink. The solid and 
broken lines represent least-square fits of the experimental data, on the inner and outer spheres 
respectively, to the sine functions given in (5). Successive waves in the negative time direction, 
corresponding to  the direction of wave rotation, are labelled 1,2, . . . , m. 

FIGURE 5. Schematic representation of the fluctuating colatitude, 

6,(p') = A,W(p;) = A, W(p'-Api), 

of the source or sink j in the frame rotating with the travelling azimuthal waves. 9, 'p; and 
Api (=$-pi) are the reference azimuthal angle, the azimuthal angle for each j and 
the azimuthal phase difference between p' and pi, respectively. W(@) describes the wave pattern 
in the rotating frame. Aj  and 2n/m are the constant amplitude and the azimuthal wavelength, 
respectively. 

to the rotation period of the travelling azimuthal waves. Since the rotation period 
m/fl is found to be 2.21 at R* = 5.19 from figure 4, the rotation frequency f i lm 
becomes 0.452. Thus, the wave pattern has m-fold rotational symmetry and rotates 
as a rigid body with rotation frequency f i lm about the sphere axis ; hence the pattern 
is at rest for an observer fixed in a reference frame rotating with the waves. 
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j i0 a0 i l  i2 a% 

Ati 0 0.0177 0.0546 0.01 16 

Source Sink Sink Source Sink 

0.0372 
AVj 0" -2.99" -9.24' - 1.97" - 6.30" 
AvjlPA 0 -0.0415 -0.128 -0.0274 -0.0874 

TABLE 2. Temporal and azimuthal phase differences between the source i0 and other sources or sinks 
j, Ati and Avj, and the ratio Arpi/vA for the wavy-vortex-flow state with four toroidal cells and five 
azimuthal waves (Nlm = 415) a t  R* = 5.19. At,, A v j  andv, = 2nImare the temporal phase difference, 
the azimuthal phase difference and the azimuthal wavelength of the travelling azimuthal waves, 
respectively. 

The fluctuating meridian angle, e,(q~') = ej -ej(rpr), for eachj  except for a1 and a l s  
in the rotating frame, is schematically illustrated in figure 5 ,  where gj is the average 
meridian angle, and 9' and yi are the reference azimuthal angle and the azimuthal 
angle for each j ,  respectively. qr and rpi are measured with respect to the rotating 
frame and increase in the direction of the sphere rotation; and Aqi = rp'-vi is the 
azimuthal phase difference between qY and vi. For the modal analysis of the 
unmodulated travelling azimuthal waves, let the fluctuating meridian angle gj(v') be 
assumed to take the form 

- 
gj(cpr) = Bj-Bj(rp') = A j  W(rpi) = A j  W(rp'-A@), ( 1 )  

where A, is the constant amplitude, and W(rpi) describes the wave pattern and 
obeys 

Since the rotating frame rotates with angular speed 2xfJm with respect to the 
laboratory, q~ and vr are related by 

2 A  fi t 
= v-, 

The fluctuating meridian angle B j ( t ,  v) measured in the laboratory will then be 

where Av,  = y-qi is the azimuthal phase difference between the reference azimuthal 
angle rp and the azimuthal angle rpj for each j.Arpj is equal to Arpi (=  -v;), and 
Atj is the temporal phase difference related to the azimuthal phase difference Avj  

Avj = - 2~ fi Atj. 

W(rpi) = sin (vi), 
(4) by 

If we assume 

then (1)  and (3) are written as 

gj(rp') = A j  sin [m(p?'- AT;)] 
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FIGURE 6. Reynolds-number dependence of the amplitude and the rotation frequency of the 
travelling azimuthal waves for the wavy-vortex-flow state with four toroidal cells and five 
azimuthal waves ( N / m  = 4/5). (a)  Reynolds-number dependence of the amplitude A,,,. indicates 
the experimental data. ( b )  Reynolds-number dependence of the rotation frequency f J m .  0, , 
indicate the present data, obtained from the scattered-light-intensity power spectra and from the 
data in figure 4, respectively. The dashed-dotted line indicates data for the wavy-toroidal and 
spiral-TG-vortex-flow state with two toroidal cells, five or six azimuthal waves and one, two or 
three pairs of spiral TG vortices ( N  = 2, m = 5-6, S,  = 1-3) for p = 0.14, obtained by Nakabayashi 
& Tsuchida (1988) in spherical Couette flow. 0,  the error bar 0 and the solid line show data for 
the wavy-vortex-flow state with N = 18-32 and m = 3-7 obtained by Coles (1965), in circular 
Couette flow with p = 0.144, F = 27.9. The broken line shows data for the wavy-vortex-flow state 
with N = 0.833r and m = 4-5 obtained by King et al. (1984) for circular Couette flow with @ = 
0.152, r,,, = 80. 

and 

respectively. 
The values of Atj,  AT,, and the ratio of Aq, to the azimuthal wavelength qA = 2n/m 

are given for each j at R* = 5.19 in table 2, where the temporal and azimuthal 
phases for j  = i0 are chosen as reference phases (Atio = Aqio = 0). The temporal phase 
difference Atj is obtained from the sine function illustrated in figure 4, then Aqj is 
calculated using (4). The temporal and azimuthal phases for j  = i0 are ahead of those 
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FIGURE 7 .  Clearance-ratio dependence of the rotation frequency of the travelling azimuthal 
waves. Spherical Couette flow: A, A, present data;  0, +, Nakabayashi & Tsuchida (1988) (p = 
0.14); 0,  ., Yavorskaya et al. (1980) (0.398 5 /J’ 5 1.33). Circular Couette flow: 0,  0 ,  King et al. 
(1984) (0.0526 5 /ls 0.588). The open symbols show the maximum values, and the filled symbols 
the minimum values in the relationship between f i l m  and R*. 

for any other j. At R* = 5.19, the difference of phases among all j is not great (less 
than 0.12850,, i.e. 0.128 waves), as indicated in the table. This difference is not great 
at other R* either. Accordingly, all the waves in the meridian direction are 
considered to be in phase. 

Now the amplitude and the rotation frequency fi lm of the travelling azimuthal 
waves will be discussed. In  figure 6(a) the relation between the amplitude for j = aO, 
Aao, and R* is shown. A,, decreases with increasing R* and becomes zero a t  
R* x 7.2, where the azimuthal waves disappear. The amplitude for any other j 
shows the same tendency as for j  = aO. In  figure 6(b), the present data for f i lm in the 
wavy-vortex-flow state with m = 5 decrease with increasing R*, whereas the 
previous data (Nakabayashi & Tsuchida 1988) for fi lm in the wavy toroidal and 
spiral TG vortex flow (flow regime I11 WTS) with m = 5 or 6 for p = 0.14 increase 
with R* for m = 6, and decrease for m = 5. Thus, the rotation frequencies of the 
azimuthal waves in different flow regimes, I I I W T  and IIIWTS, show the same 
tendency as R* is increased if their wavenumbers are the same. 

On the other hand, in CCF for p = 0.144 (Coles 1965, with aspect ratio r = 27.9), 
the wavy-vortex-flow states form with m = 3-7, and film decreases with increasing 
R*, as shown in figure 6(b) .  For = 0.152 (King et al. 1984, with maximum aspect 
ratio r,,, = 80), the wavy-vortex-flow states form with m = 4-5, and f i lm decreases 
with R*. The comparison of f i l m  from the present study with that from CCF shows 
that the former is greater than the latter, although the former displays the same 
tendency as the latter as R* is increased. 

The clearance-ratio dependence of the rotation frequency f i lm is shown in figure 
7, compared with that in CCF, where the range of uncertainty is obtained from the 
maximum and minimum values in the relationship between f i lm and R*, as shown 
in figure 6(b). Although the experimental results for ,8 = 0.138, 0.14 in SCF, and for 
all /3 in CCF are for the travelling azimuthal waves appearing on the toroidal vortices, 
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the data for /3 2 0.398 (Yavorskaya et al. 1980) in SCF are presumed to be for some 
velocity fluctuations appearing within the Ekman boundary layer, because no TG 
vortices occur for /3 2 0.398. The rotation frequency for SCF has a similar clearance- 
ratio dependence to that for CCF, but the former is greater than the latter. 

4. Experimental results for modulated waves 
4.1. The condition for the appearance of modulated waves 

In order to find the condition for the appearance of modulated travelling azimuthal 
waves (modulated wavy vortex flow), the flow is observed under the condition that 
R* is increased from zero to R,* with an acceleration rate R* and then is kept 
constant at R,*, as shown in figure 8. T is time, Ts is the time required for the 
acceleration, and Th ( =  T-T,) is the time lapse after the acceleration has finished. 
All of these quantities are expressed non-dimensionally in units of a characteristic 
time R,(R,-R,)/v adopted by Wimmer (1976). 

The flow regime is transient with the lapse of time T, but eventually reaches some 
final flow regime independent of T. The dependence of the final flow regime on R* and 
R,* is shown in figure 9. The labels I B, I1 T, I1 TS, I11 WTS, I11 WT and I11 MWT 
show the flow regimes, the characteristics of which are shown in table 1. The label 
I11 MWT + I11 WT indicates the flow regime in which I11 MWT and 111 WT appear 
alternately a t  intervals of several minutes, as shown in figure 10, where t = 10 
corresponds to 37.5 s. No flow regime such as I11 MWT + I11 WT has been reported 
for CCF. As can be seen in figure 9, spiral TG vortices appear for R* 5 10-o.6, and 
modulation of waves IIIMWT cannot occur. However, under the condition of 
R* 2 10-o.6 and 1.7 5 R,* 5 2.8, no spiral TG vortices appear and modulation of 
waves can be obtained. 

As described above, flow is transient with over time. Figure 11 shows the transition 
sequences from I B  to the final flow regimes with time lapse T, comparing the greater 
acceleration case (A* 2 10-o.6) and the smaller acceleration case (&*  5 10-o.6). In  
view of the difference in the transition process between the two cases, it is inferred 
that the necessary condition for the appearance of IIIMWT is the prevention of 
spiral TG vortices. Because of the greater acceleration, the transition from IIT 
( N  = 2) to I I T  (N = 4) occurs, then the transition to I11 WT and to IIIMWT 
occurs easily. It should be noted that N l m  is 416 when the modulation occurs. 

From another experiment, we found that IIIMWT can also be obtained by the 
quasi-static increase of R*, once I1 T ( N  = 4) has been produced by some acceleration 
rates. Table 3 shows the observable sequence of flow regimes obtained by that 
procedure. For SCF, the modulation occurs simultaneously with the travelling 
azimuthal waves. However, for CCF (Fenstermacher et al. 1979), when R* increases 
quasi-statically, unmodulated travelling azimuthal waves primarily appear, followed 
by the modulation. 

4.2. Characteristics of modulated waves 
When the modulation of the travelling azimuthal waves appeared in the flow state 
with N / m  = 416 a t  R* = 2.2, both the meridian cross-section of the spherical 
annulus and the whole spherical surface were photographed at fixed intervals over 
time. Figure 12(a) shows temporal oscillations in the meridian angles B,(t,rp) of the 
sources and sinksj shown in figure 2. These data are obtained by analysing successive 
photographs in the laboratory of the meridian cross-section a t  an azimuthal angle 37. 
Both the sources and sinks j (except j = a1 and als)  oscillate from an S-shape to a 
flattened shape (modulate) a t  the period l/fi = 7/f,. As indicated by Gorman & 
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Flow state 
Reduced transition 
Reynolds number Flow regime N m k 

__ I1 T 4 0 - 

1.71 IIIMWT 4 6 - 1  
IIIMWT 4 6 - 1  
+IIIWT 4 6 2.64 

2.80 IIIWT 4 6 
- 

TABLE 3. Sequence of the flow regimes observed when R* is quasi-statically increased from the 
toroidal-vortex-flow state with four cells (N = 4). The label 111 MWT + I11 WT shows that the 
modulated wavy-vortex flow (111 MWT) and the wavy-vortex flow (I11 WT) appear alternately. 

R* 

/ 

v 
0 T 

FIGURE 8. The condition for the time history of the reduced Reynolds number R* adopted to 
examine the relationship between.the appearance of the modulated wavy-vortex flow regime and 
the acceleration rate R*. R* is R*T for 0 5 T 5 T, and R,* for T 2 Ts7 where R* = dR*/dT = 

R,*/Ts. 

3 

111 MWT + 111 WT - 
111 MWT 

R: 
2 

I 

L IIIWTS I 8 

. . .  . . . . . . ( N = 4 )  I1 TS 
[-:ZSBEE B\ . .. . .. . . 

_ _ _  0 "  - wo,+o 0 

I B  L 1 1 T ( N = 2 )  
, I  1 1 1 1 l l 1 1 1 1 1 1  

-1.3 -1.0 -0.5 0 0.3 
log,, R* 

FIGURE 9. Dependence of the final flow regime on R* and R,*. x , I11 WT(N/m = 416); 0 ,  I11 
MWT(N/m/k = 4161-1); 0,  111MWT(N/m/k = 4161-l)+IIIWT(N/m = 416); 0 ,  11T(N = 
4) ;  0, 11T(N = 2); e, 111WTS(N = 2,m = 6,S, = 3-3), 0 , 1 1 T S ( N  = 2 ,S ,  = 3-3). The variable 
S ,  shows the number of pairs of spiral TG vortices in the northern (0" < 6' < 90') and (-) southern 
(90" < 6' < 180") hemispheres. 
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FIGURE 10. Temporal variation of the output E (V) of scattered-light intensity at R* = 2.64 for the 
flow regime labelled 111 MWT + I11 WT, where the modulated wavy vortex flow (111 MWT) and the 
wavy vortex flow (111 WT) appear alternately. 

N = 2,  S, = 3-3 N = 4  

70 

80 

t 

FIGURE 12 (a).  For caption see facing page. 
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-f-- Rotation 

FIGURE 12. Temporal dependence of the meridan angles O,(t,p) of the sources and sinks j at an 
azimut.ha1 angle p in the laboratory and photographs of the evolution in time of the modulation. 
Temporal dependence of the meridian angles and photographs of the evolution of the modulation 
pattern in the laboratory for the modulated wavy-vortex flow state with N / m / k  = 4/61 - 1 a t  
R* = 2.2 .  ( a )  Temporal dependence of the meridian angles O,(t,v). 0 (source) and (sink) show 
the experimental data. Successive waves in the negative-time direction, corresponding to the 
direction of' wave rotation, are labelled 1,2 ,  . . . , m. The waves with the bar and hat over the number 
are the flattened and S-shaped waves, respectively. l/fi is the modulation period in the laboratory. 
( b )  Photographs of the evolution in time of the modulation pattern. Time t increases downward, 
and the azimuthal angle p increases leftward. The time interval between the successive photographs 
is the average time l/fi for one wave to pass a point of observation in the laboratory. Waves are 
labelled as for ( a ) .  

Swinney (1982), a vortex outflow boundary periodically oscillates from an S-shape 
to a flattened shape in CCF. However, both vortex inflow and outflow boundaries 
similarly oscillate in the present study, even though the vortex inflow boundaries on 
the outer sphere are stationary, just as in the case of unmodulated waves (see figure 
4). Figure 12 ( b )  shows successive photographs of the whole spherical surface taken 
a t  the time interval, l/fi, required for one wave to pass a point of observation in the 

17 F1.M 195 
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FIGURE 13 ( a ) .  For caption see facing page. 

laboratory, where time t increases downward, and the azimuthal angle q in the 
laboratory increases leftward. The modulation pattern a t  t = 0 reappears a t  
t = 7/f1, which corresponds to l/f2 = 7/f1 in figure 12(a). From figure 12(a, b ) ,  the 
modulation frequency fi of the travelling azimuthal waves in the laboratory is given 
by 

fl 
2 - 7  

f - - = 0.39 (R* = 2 . 2 ) ,  

because fl = 2.73 a t  R* = 2.2. 
Amplitude A,  and temporal wavelength t ,  of each individual wave were measured 

in figure 12(a), and plotted as a function of time at each individual wave node, as 
shown in figure 13 ( a ,  b). The flattened wave that has the smallest amplitude (greatest 
flattening) is indicated by the wavenumber with a bar over it (i.e. 7 ,  6 and 5 ) .  And 
the S-shaped wave with the greatest amplitude (most pronounced S-shaping) is 
indicated by a wavenumber with a hat over it (i.e. 4, 2 and 5) .  Solid lines in figure 
13 represent least-square fits of the experimental data to sine functions given by 

A j  = Xj +Aj sin [21tfAj(t - AtAj ) ]  

t,j = tFj + ipj sin [21tfFj(t - A t F j ) ] ,  

(6) 

and (7) 

respectively, where Aj and tF j  are average values, Aj and iF, are magnitudes of 
oscillation (modulation), f A j  and f F j  are modulation frequencies, and AtAj and AtFj are 
temporal phase differences from a reference time t .  From figure 13 (a) ,  we found that 
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FICCRE 13. Amplitude and frequency modulations for the modulated wavy-vortex flow state with 
N / m / k  = 4/6/- 1 a t  R* = 2.2. For description of wave labelling see figure 12. 0 (source) and 

(sink) are the experimental data. l/fi is the oscillation (modulation) period in the laboratory. 
( a )  Temporal dependence of the amplitude of each individual modulated wave. The solid 
line represents the least-square fit of the experimental data to the sine function given by (6) .  
( b )  Temporal dependence of the temporal wavelength of each individual modulated wave. The 
solid line represents the least-square fit of the experimental data to the sine function given 
by ( 7 ) .  

the travelling azimuthal waves are amplitude modulated, and the period of 
amplitude modulation, l/fAj, is almost the same as 1/j2, i.e. 

1 1  

r4 =f i ’  
where j is omitted. Similarly, from figure 13(b)  we found that the travelling 
azimuthal waves are frequency modulated, and that 

1 1  

fF=z 
Hence, the travelling azimuthal waves are both amplitude and frequency modulated, 
and the frequencies of modulation are given by 

f A  = f F  = f,.  (8) 

This equation is probably independent of R* because the wave shape at  other R* 
values was visually confirmed to be almost the same as that at R* = 2.2, as shown 
in figure 12. 

17 1 
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FIGURE 14. Schematic representation of the evolution in time of the modulation pattern in a 
reference frame rotating with the waves. Time t increases downward, and the azimuthal angle p' 
in the rotating frame increases (from 0 to 2x) leftward. For description of wave labelling, see 
figure 12. 

A schematic diagram showing the temporal evolution of modulation patterns in a 
reference frame rotating with the speed of the travelling azimuthal waves is shown 
in figure 14, where the time t increases downward, and the azimuthal angle 9' 
increases leftward. This diagram was obtained by analysing successive photographs 
of the whole spherical surface taken at the time interval l / f i  = 7 / f 1 .  Since the 
modulation pattern at t = 0 reappears at t = 4 S / f l ,  the modulation frequency of both 
amplitude- and frequency-modulated travelling azimuthal waves in the rotating 
frame is given by 

(9) f '  - - f i  (R" = 2 . 2 ) .  
- 42 

Hence, f i  = 0.065 is obhained, because fl = 2 . 7 3  a t  R" = 2.2. 

and their superposed modulat'ion in the laboratory given in (8), i t  is obvious that 
From the relationship among the amplitude modulation, the frequency modulation 

f; =f& = f &  (10) 

where j ;  and f h  are the modulation frequencies of amplitude and frequency 
modulations, respectively, in the rotating frame. 

between the amplitude modulation of successive 
azimuthal waves is the same as the phase angle between the frequency 
modulation of successive azimuthal waves. Thus, the phase angle A# between the 

In figure 14, the phase angle 



Aziniuthal waves on the toroidal vortices in a spherical C'ouette system 511 

-0.lq 

j 

FIGURE 15. Magnitudes and temporal phase differences of the amplitude and frequency 
modulations for the moddated wavy-vortex-flow state with N / m / k  = 4/61 - 1 at R* = 2.2. 0, 0, 
show the present data for the amplitude and frequency modulations, respectively. (a) Magnitudes, 
defined by Ai = AJK,  and fF5 = tFj/tF,,  of the amplitude and frequency modulations, respectively, 
for eachj. The dashed-dotted line shows the data obtained by Gorman & Swinney (1982) in circular 
Couette flow with p = 0.133, r = 20. ( b )  Temporal phase differences AtAj and At, of the amplitude 
and frequency modulations for eachj. The phase for A,, is chosen as a reference phase (At,,,, = 0) .  

superposed modulation of the amplitude and frequency modulations of successive 
azimuthal waves is the same as A#A and A#p, i.e. 

A$A = A#F = A#. 

Since A# is independent of qY, 2nk 
m 

A # = - ,  

where k is a modulation parameter of the superposed modulation, just as for CCF 
~~ 

(Swift et al. 1982). Similarly, 
2nkA 2nk, 

A$* = 7 > A $ F  = -&- > 
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PIQURE 16. Reynolds-number dependence of the rotation frequency f J m  of the modulated 
travelling azimuthal waves, the modulation frequency fi measured in the laboratory and the ratio 
of f,/f, for the modulated wavy-vortex flow state with N / m / k  = 4/6/-1. 6.  V, + indicate the 
experimental data for fJm, fz, fl/f,, respectively. 

where k ,  and k ,  are modulation parameters of the amplitude and frequency 
modulations, respectively. Consequently, 

k A  = k ,  = k .  ( 1 1 )  

The values of L A ,  k ,  and k are - 1  in figure 14 (Gorman & Swinney 1982). This 
equation is probably independent of R", because the wave shape at  other R" values 
was confirmed to be almost the same as that a t  R" = 2.2, as described previously. 

= &xi and fFi = &J'3/tF3 for each 
j, which were calculated from the results in figure 13. Since ai > tFi, the magnitude 
of amplitude modulation is greater than that of frequency modulation. On the other 
hand, for CCF Gorman & Swinney (1982) measured the time for successive waves to 
pass an observer in the laboratory by analysing cin6 films frame by frame. They 
obtained the deviation from the mean time of arrival of waves for the modulated 
wavy-vortex-flow states with k = 0 (m = 4 and 5) and k + 0. Their data are shown 
in figure 15 by dashed-and-dotted lines, where the difference in fF i  by j (vortex 
outflow boundary) is neglected because it was not reported. The magnitude of 
frequency modulation in SCF is much greater than that in CCF. The temporal phase 
differences AtAi and At,, which were calculated from the results in figure 13, arc 
indicated for each j in figure 15 ( b ) ,  where the phase of A,, shown in figure 13 ( a )  is a 
reference phase (AtAio = 0) .  For an observer in the laboratory the phase of the 
amplitude modulation is slightly ahead of that of the frequency modulation, because 
At, z At,+O.l/f, (0 .1/f2 = O.7/f1 = 0.25) for all j ,  where j is omitted. At, = AtA 
means that the S-shaped wave has the greatest wavelength and the flattened wave 
has the smallest wavelength, while AtF = A t A + 0 . 5 / f ,  means that the former has the 
smallest wavelength and the latter has the greatest wavelength, as can be seen in (6) 
and (7). Accordingly, the former is elongated and the latter is shortened in 

Figure 15 ( a )  shows the magnitudes defined by 
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Present 

P 0.138 

m 6 
12 -1 
N 4 
R* 1.77 - 2.64 
fl 2.730f0.066 

f z  0.387 f 0.009 
A 0.066 f 0.018 

r - 

film 0.455 * 0.01 1 

Relation f; = - f z - k f J m  

CCF 

0.133 
20 
6 

-1 
20 
10.5 (onset) 
2.03 
0.34 
0.21 
0.55 
f; =fg-Icfi/m 

TABLE 4. Comparison of characteristics of the modulated wavy-vortex-flow state with m = 6 and 
k = - 1 for the present data  with those for circular Couette flow (Gorman & Swinney 1982). The 
relationships among the characteristic frequencies are described in $5. The values of characteristic 
frequencies in circular Couette flow are obtained at its observed onset (R* = 10.5). 

the present results, whereas the former is shortened and the latter is elongated 
(AtF z At ,+0 .5 / f2 )  in CCF (Gorman & Swinney 1982). 

The Reynolds-number dependence of the rotation freyuency f i l m ,  the modulation 
frequency f ,  and the ratio, f J f , ,  is shown in figure 16 for the modulated wavy-vortex- 
fiow state with N / m / k  = 4/6/ - 1. The values of f l / m  and fJf, were calculated from 
the measured values of fl, f2  and m. The values of f l  and f ,  that were determined from 
the power spectra of the intensity of laser light reflected by the aluminium flakes 
suspended in the fluid agree with those determined by visual observation using a 
stop-watch. Both the absolute and relative amplitudes of the components of the 
power spectra varied considerably, depending on the position of the laser beam in the 
annulus, but the components of the frequencies were independent of the scattering 
position. The value of m was determined by flow visualization, as described in $2.  The 
f i l m  value tends to increase with R* This tendency is similar to the dependence of 
f i lm on R* for the wavy toroidal and spiral TG vortex flow state with m = 6 in figure 
6(b ) .  However, if the f J m  value is considered to be approximately constant, it is 
given by f i l m  = 0.455f0.011 (+2 .4%) .  

The variation f 0.01 1 is greater than the spectral resolution A f/m = 0.00084.0016, 
SO that the f , / m  value is probably dependent on R*. On the other hand, the f 2  value 
is given by 

f, = 0.387 kO.009 ( f 2.3 %). 

The variation f 0.009 is on the same order as the spectral resolution A f = 0.005-O.01. 
The fl/f, value varies with increasing R*, as shown in figure 16, and is given by 

f,/f2 = 7.03+0.30 (+4.3%). (12) 

And the relatively large variation f 0.30 does not seem to corroborate the frequency 
entrainment (i.e. over some range of R*, f , / f ,  is not given by the ratio of small 
integers). 

F o r  CCF (Gorman & Swinney 1982), fl in the doubly periodic flow regime is 
independent of R* within the 1 YO experimental uncertainty ; however, the variation 
of fi (for a given m) as a function of k is as much as 3 YO, greater than the experimental 



514 K .  Nakabuyashi and F. Tsuchida 

uncertainty and f i l m  = 0.34f0.01 ( f 2 . 9 % )  for all R*, N ,  m and k .  On the other 
hand, f i l m  for SCF depends on R*, as described above, and is greater than that for 
CCF, just as for unmodulated waves (see 93). The f 2  value for CCF increases 
monotonically with increasing R* and the total increase over the whole modulated 
wavy-vortex-flow region is at most 20%, whereas f 2  for SCF is virtually independent 
of R*, as described above. The rat>io fJf2 for CCF is a strictly decreasing smooth 
function of R* for all flow states, whereas fJf2 for SCF has a tendency to increase 
with R*, as shown in figure 16, Thus, fJf2 probably depends on R* for SCF as well 
as CCF, so that the absence of frequency entrainment is corroborated for SCF as well 
as CCF. 

The characteristics of the modulated wavy-vortex-flow state obtained in the 
present study are summarized in table 4, and compared with those of the modulated 
wavy-vortex-flow state with m = 6 and k = - 1 in CCF. Rand (1981) used dynamic- 
systems concepts and symmetry considerations to derive predictions about the 
space-time symmetry of doubly periodic flows in circularly symmetric systems. He 
predicted that only flows with certain space-time symmetries should be allowed. 
Gorman & Swinney (1982) discovered twelve doubly periodic flow (m, k )  states in 
CCF, indicating that the observed flow states are in agreement with Rand’s theory. 
Although in SCF the unobserved modulated wavy-vortex-flow states might be 
stable, we have not yet found a way of producing them. The modulated wavy- 
vortex-flow state for SCF is located in a much lower R* range than for CCF. 

5. Modal analysis of modulated waves 
For a modal analysis of the modulated travelling azimuthal waves, the fluctuating 

values 6j(t,cp’) of the meridian angles O j ( t ,  cp’) of the sources and sinks j a t  time t and 
an azimuthal angle cp‘ in a reference frame that rotates in phase with the azimuthal 
waves can be assumed to take the form 

6,(t, 9’) = Bj - O,( t ,  cp’) = Aj(t ,  9’) W(t ,  cp’) ,  (13) 

following Swift et al. (1982). 6, is the average of O , ( t , q ‘ ) ,  and Aj(t,9’) and W(t,cp’) give 
the fluctuating amplitude (amplitude modulation) and the fluctuating wave pattern 
(frequency modulation), respectively. The reason why U’ describing the wave pattern 
is here assumed to be W(t.9’) instead of the W(9’) in the modal analysis of Swift 
et al. for CCF is that frequency modulation as well as amplitude modulation is 
included in the present study. Let f >  and f >  be the frequencies of amplitude and 
frequency modulations, respectively, in the rotating frame. Then A,(t, cp’) and 
WP,cp’) obey 

Aj t+- 9 = Aj(t ,y’) ,  W t+- 9’ = W(t,v‘) ,  (14) ( ;A7 ’1 ( ;F3 1 
respectively. Further, Aj(t ,  cp’) and W ( t ,  cp’) obey 

Aj(t,cp’+27C) = A,(t,cp’), W(t,cp’+27T) = W(t,cp’), (15) 

respectively, because they must be periodic functions with a period 2n. We introduce 
phase angles #A(cp’)  and #F(cp’)  for the amplitude and frequency modulations, 
respectively. Then we may write 

Aj(t,cp‘) = ajr2qf‘l t - $ A ( q ’ ) I >  W(t,v‘) = W[27Cf>t-#&’)l. (16) 

where aj and w are periodic functions of each argument with a period Zn, just as Swift 
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et al. (1982) introduced a phase angle for the amplitude modulation in CCF. For 
Aj(t,q’) and W(t,p’) in (16) to satisfy (15) we must have 

$~(q’+2n)  = $ ~ ( q ’ ) + 2 n k ~  ( k D E Z ) ,  (17) 
where 2 is a set of integers, and the subscript D is used instead of the subscripts A 
and F in order to  shorten the description. As described in $4.2, the phase difference 

between the modulation of adjacent waves is the same; i.e. 

We can without loss of generality restrict the integer k ,  to the range 

-& < k D  5 $‘n ( k D E Z ) ,  
since $ D  is modulo 2n. In  this case, we may then write 

Substitution of (16), (18) and (19) in (13) yields 
- 
oj(t, q’) = aj[2nfa t -  X A  (q’) - k ,  ($1 U427C.f; t - X F ( q ’ )  - k p  q’). (20) 

Since the frequency f i  in the rotating frame is the modulation frequency of 6,(t,q’), 
including both amplitude and frequency modulations, 6j(t ,  q’) must obey 

From (20), (21) and the periodicities of the periodic functions aj and u1, we obtain 

f;, = i;,& (ih2 E 2). (22) 

The equation, which gj(t ,y’)  must also obey, 

Bi(t,q’+2n) = Bj(t ,q’)  (23) 

is easily confirmed from (19), (20) and the periodicities of the functions ai and w. 
Substitution of (22) into (20) yields 

6j(t, q’) = ai[27Ci>,fL t - X A  (q’) - k, $1 U1[27Cikzf; t - X F ( ~ ’ )  - k ,  ($1. (24) 

From substitution of (2) in (24) the fluctuating value 6,(t,q) of the meridian angle 
e,(t,q) a t  time t and an azimuthal angle q in the laboratory will be obtained as 

Since the frequencies f2 ,  f,. and f F  are the modulation frequencies of the superposed 
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modulation of amplitude and frequency modulations, the amplitude modulation and 
the frequency modulation, 6?(t, p), A,(t, y) and w(t, p) obey, respectively, 

From (16), (19). (25), (26), (27) and the periodicities of the functions ai and w, we 
obtain 

f l  f , = - ,  
212 

(31) 
f l  - i l Z f 2  f D -  -7-7. 
' 1 ,  ' 1 0  

When xD(y') in (18) is a periodic function with a period 2n/m, as (19) shows, the 
variables i,, in (30) and (31) and i,, in (31) must be integers for this periodicity to  
be satisfied. But when x,(cp') is a constant, as a special ease, i,, and i,, need not be 
integers because the above periodicity becomes meaningless. Since i,, and i,, are not 
always integers as R* is varied, as we shall see later, xD(p') seems to be a constant. 
The requirement that 6,(t, y), Aj( t ,  p) and W ( t ,  y )  must be periodic functions with 
period 2n is easily confirmed by ( 2 ) ,  (15) and (23). Substitution of (28) in (25) 

The present results, (8), (lo), ( l l ) ,  (12) and table 4, obtained in the range 1.77 
< 2.64 for the modulated wavy vortex flow are summarized as 

R* 

ha, = k, (32) 

Although the f i  value in the rotating frame was only measured from successive 
photographs, as described in $4.2, for R* = 2.2 ,  it can be assumed to be approximately 

f L = f J 4 2  (assumption), (35) 

as shown in (9), because the wave shape a t  other R* values was confirmed to be 
almost the same as that a t  R* = 2.2. Substitution of (32)-(35) in (22) and (28)-(31) 
yields 

- 1,  (36) 
f 6  ibZ = - - 
fL 
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J D  

i12 =i = 7.03k0.30, 

t12 = 7.03k0.30. 

(39) 

Since the variables i,, in (37) and i,, in (38) must be integers as shown in (28) and 
(29), respectively, they are presumed to be 

and 

respectively. Equation (41) is rewritten as 

Since i,, and i,, are not always integers from (39) and (40), x,(v’) in (18) seems to 
be a constant, not a periodic function with a period 2nfm as Swift et al. (1982) 
assumed in (19), as described previously. 

Although the results of (32) and (36) are the same as those given by Gorman & 
Swinney (1982) for CCF, the results of (39) and (41) are different from those for CCF, 
where i12 and i,, are given as 

. fl 
f 2  

tl, = - = 9.67 (m = 6, k = -1, R* = 10.5 (onset), CCF), 

i,, = i k f ;  + k,f,/m - - f ;  + k f J m  = 1 (CCF). 
f 2  f 2  

Since the i,, value depends on R* (which, of course, depends on N ,  m and k )  for CCF, 
i,, is not always an integer, and consequently x D ( ~ ‘ )  in (18) must be a constant for 
CCF as well as SCF. Nevertheless, Swift et al. (1982) simulated the xA(cp’) for the 
amplitude modulation as 

xA(pl’) = int - -k$ (CCF) [T‘] 
for the modulated wavy-vortex-flow state with m = 4 and k = 1 for CCF. Since 
Gorman & Swinney (1982) obtained the following result : 

i,, = 1.68 (m = 4, k = 1, R* = 10.2 (onset), CCF), 
f 2  

The above simulation is not reasonable with respect to putting xA(qY) =!= const. 
For a quantitative comparison with the experimental data, we have generated 

synthetic time-series files using the specific functions that were adopted by Ohji, 
Shionoya & Amagai (1986) for CCF, namely 

x D ( q ’ )  = ‘Dj ’  $ D ( V ’ )  = x D ( V ’ ) +  k D d  = c D j +  ‘Dg?‘ 
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FIGURE 17. Simulation of modulated waves for modulated wavy-vortex flow state with N/m/k  = 
4/6/ - 1 at R* = 2.2. For descrjption of wave labelling see figure 12. (a) Temporal dependence of 
the fluctuating meridian angle B,,(t, 9) in the laboratory. indicates experimental data. The solid 
line is the simu1Ftion given by (45). ( b )  Azimuthal and temporal dependence of the fluctuating 
meridian angle 8,,(t,p’) in the rotating frame simulated by (44). The cph value is 0.675%. 

and aj[2ncf>t-q5A(cp’)] = aj+Lij sin (2nf>t -cAj- lc ,q’ ) ,  

~ [ 2 n f k t - + ~ ( c p ’ ) ]  = sin[mp‘+mj++j sin (2nfk t -cFj-k ,cp’ ) l , )  (43) 

where aj, Li,, c,,, ?a,, Gj, cFj are constants. Although Ohji et al. (1986) assumed x&’) = 
constant without any discussion, the reason for this are as described above. 
Substitution of (22)  and (43)  in (24) yields 

J,(t,rp’) = [zj+iij sin (2?tii2fkt-cAj-k,cp’)] 

x sin [mp’ + mj + Gj sin (2niZ,f;  t -  cFi - kFp?’)]. (44) 

Further, substitution of ( 2 )  and (28) in (44) yields 
- 
O,(t,cp) = [aj+iij sin (2xi , , f2t-cAj-kAp?)]  

The temporal dependence of the fluctuating value 19- (t,q) of the source i0 a t  an 
azimuthal angle cp in the laboratory is shown by the points in figure 17 (a) ,  which is 
obtained from the experimental data of the meridian angle Oio(t,cp) a t  R* = 2.2 in 

’? 
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0.09 Modal analysis 
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FIGURE 18. Reynolds-number dependence of the modulation frequencies f i  in the rotating frame 
computed from (35) and (42), respectively, using the measured values off, andf,. V and indicate 
data computed from (35) (assumption) and (42) (modal analysis), respectively. 
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FIGURE 19. Power spectra of the fluctuating colatitude gl,,(t,p) in the laboratory simulated by (45) 
and the fluctuating intensity of the laser light scattered by aluminium flakes for the modulated 
wavy-vortex flow state with N / m / k  = 4/61 - 1 a t  R* = 2.2 .  ( a )  Power spectra (arbitrary units) of 
fluctuating colatitudes B,,(t,cp) simulated by (45). ( b )  Power spectra of fluctuating intensity (in 
volts) of scattered light. 

figure 12 ( a ) .  A solid line represents a least-square fit of the experimental data to the 
function (45), where fi, f 2 ,  E D  and M have the values described in $4.2 and i,, is given 
in (41); p = 0 and 

(46) 
aio = 0.933, Ci,, = 0.419, cAia = 3.73, 
mi0 = 1.33, Gio = 1.48, cFi ,  = 2.19. 
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The solid line is in good agreement with the experimental data, as seen in figure 
17(a). Figure 1 7 ( b )  shows the simulation given by (44), where f,' has the value 
described in $4.2, ib2 is given in (36) and the values in (46) are used. The simulation 
well represents the schematic modulation patterns shown in figure 14. 

The modulation frequencies f,' in the rotating frame computed from both (35) 
(assumption) and (42) (modal analysis), using the measured values of fl and f 2  

indicated in figure 16, are shown in figure 18. The difference between the results 
obtained by the assumption and the modal analysis seems to be caused by 
assumption (35) or the spectral resolutions Af/42: = 0.0001-0.0002 for (35) and 
( l+ lk l /m)Af  = 0.006-0.012 for (42). 

The power spectra computed from the time series generated by the function (45) 
are shown in comparison to the scattered-light-intensity power spectra in figure 19. 
The former were the spectra calculated from the function (45) least-square fitted to 
the 8j fluctuation f o r j  = i0 (solid line in figure 17a), which was almost the same as 
those for other j values. The latter was the spectra obtained from the scattered-light 
intensity a t  6' = go", which was almost the same as those for other 0-values. Both of 
the power spectra contain almost the same sharp frequency components, although 
the relative amplitudes of the components are different. 

6.  Conclusions 
We have considered the unmodulated and modulated travelling azimuthal waves 

on the toroidal Taylor-Gortler (TG) vortex appearing in the spherical Couette 
system. These unmodulated and modulated travelling azimuthal waves could be 
produced with the inner sphere rotating a t  a specific acceleration rate. We found that 
the necessary condition for occurrence of the modulation of travelling azimuthal 
waves is the prevention of spiral TG vortices. 

When the wavenumber m is the same, the rotation frequency f l / m  of the travelling 
azimuthal waves for both wavy and modulated wavy toroidal TG vortex flows shows 
the same tendency to Reynolds-number dependence as that for the wavy toroidal 
and spiral TG vortex flow, which can be produced when Reynolds number increases 
quasi-statically . 

Although t>welve flow states, m (wavenumber)/ k (modulation parameter), are 
reported in the modulated wavy vortex flow for circular Couette flow, only a state 
of 6/ - 1 is obtained in the present study for spherical Couette flow. The relationship 
among the characteristic frequencies of modulated travelling azimuthal waves, 
which is obtained from the modal analysis and the experimental data, is 

(f,'+ Icfi/m)/f2 = - 1,  

and is different from the (f,'+ kf l /m) / f i  = 1 for circular Couette flow, where f2 and 
f i  are modulation frequencies in the laboratory and rotating frames, respectively. 
The modulated wavy vortex flow includes both amplitude and frequency 
modulations in spherical as well as circular Couette flow. However, the azimuthal 
phase angle between amplitude and frequency modulations is different in the two 
Couette flows ; the S-shaped wave is elongated and the flattened wave is shortened, 
in contrast with the circular-Couette-flow case, in which the S-shaped wave is 
shortened and the flattened wave is elongated. The magnitude of frequency 
modulation, fFj, (lengthening and shortening of wavelength) is greater in spherical 
Couette flow than circular Couette flow. The magnitude of amplitude modulation. xj, (S-shaping and flattening of wave shape) is greater than that of frequency 
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modulation in spherical Couette flow. The above-mentioned difference in the 
characteristics of modulated travelling azimuthal waves between spherical and 
circular Couette flows is caused by the Ekman-boundary-layer effect on the toroidal 
TG vortices in spherical Couette flow. 

The modulated travelling azimuthal waves obtained from the fluctuation in 
meridian angles of sources and sinks at, the vortex boundary were very well simulated 
by modal analysis of the waves, including not only amplitude modulation but also 
frequency modulation. 
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